Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
Website
cancel
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Innovation against cancer
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 1556/16 (Magnetic field gradients / Weinberg) 25-03-2021
Facebook X Linkedin Email

T 1556/16 (Magnetic field gradients / Weinberg) 25-03-2021

European Case Law Identifier
ECLI:EP:BA:2021:T155616.20210325
Date of decision
25 March 2021
Case number
T 1556/16
Petition for review of
-
Application number
09767831.2
IPC class
G01R 33/38
Language of proceedings
EN
Distribution
NO DISTRIBUTION (D)

Download and more information:

Decision in EN 409.5 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

APPARATUS AND METHOD FOR DECREASING BIO-EFFECTS OF MAGNETIC GRADIENT FIELD GRADIENTS

Applicant name
Weinberg, Irving
Opponent name
-
Board
3.4.01
Headnote
-
Relevant legal provisions
European Patent Convention Art 56
European Patent Convention Art 83
European Patent Convention Art 84
European Patent Convention Art 123(2)
Rules of procedure of the Boards of Appeal Art 13(1)
Rules of procedure of the Boards of Appeal Art 13(2)
Keywords

Amendment after summons - taken into account (yes)

Amendments - allowable (yes): limitation of range on the basis of an isolated value

Sufficiency of disclosure - (yes): open- vs closed-ended ranges

Inventive step - (yes)

Catchword
-
Cited decisions
T 1943/15
Citing decisions
T 1593/22
T 1833/23

I. The appeal is against the decision of the Examining Division to refuse the European Patent application 09767831.2.

II. The Examining Division found the main request and auxiliary requests 1 to 4 before it not to be allowable. An auxiliary request 5, filed at the oral proceedings, was not consented to under Rule 137(3) EPC, and a subsequent request to continue in writing was rejected.

III. With the statement of grounds of appeal, the applicant requested that the decision be set aside and that a patent be granted on the basis of a new main request, identical to auxiliary request 2 of the impugned decision. Oral proceedings and consideration of new auxiliary requests 1 to 5 were also conditionally requested.

IV. In a communication accompanying the summons to oral proceedings, the Board expressed its provisional opinion. While disagreeing with the Examining Division, it considered claim 1 of the main request unallowable for other reasons. The auxiliary requests shared with the main request some of newly identified issues.

V. In reply, the appellant submitted further requests, among which a new main request and a new first auxiliary request, increasing the total number of requests on file to 25, and argued in favour of their consideration and allowability.

VI. In a further communication and subsequent telephone conversation, the Board noted some further issues with the new main and new first auxiliary requests.

VII. Shortly before oral proceedings the appellant submitted further auxiliary requests, based on auxiliary request 1, denoted 1(i) to 1(vii), and a further telephone conversation took place.

VIII. During oral proceedings, the appellant submitted a new main request, based on the auxiliary request 1(vii).

IX. At the end of the oral proceedings before the Board, the requests on file consisted of a main request submitted during the oral proceedings, followed by 32 auxiliary requests.

X. After deliberation, the Board came to the conclusion that the main request was allowable.

XI. Claim 1 according to the main request reads:

A method of implementing magnetic resonance imaging of structures containing neurological tissue, wherein the neurological tissue comprises at least a portion of a living organism, the method comprising:

generating and applying to said tissue a sequence of magnetic field gradient pulses of an amplitude of at least 200 milliTesla per meter and not more than 1000 milliTesla per meter, wherein the magnetic field gradient is maintained at said amplitude during a plateau time period of at least one microsecond, and changed during rise- and fall-times both of less than 10 microseconds

XII. In what follows, reference is made to the following documents. D7 and D8 were discussed during examination proceedings, and D9 and D10 are mentioned in paragraphs [0013] and [0016] of the published application.

D7 |P. T. While and L. K. Forbes : "Electromagnetic fields in the human body due to switched transverse gradient coils in MRI", PHYSICS IN MEDICINE AND BIOLOGY, INSTITUTE OF PHYSICS PUBLISHING, Bristol GB, vol. 49, no. 13, 7 July 2004, pages 2779-2798 |

D8 |F. Schmitt. et al.: "Chapter 7: Physiological Side Effects of Fast Gradient Switching" In: "Echo-Planar Imaging", 1998, Springer-Verlag, Berlin Heidelberg, pages 201-252 |

D9 |D. J. Schaefer et al.: "Review of Patient Safety in Time-Varying Gradient Fields", JOURNAL OF MAGNETIC RESONANCE IMAGING, vol. 12, no. 1, 2000, pages 20-29 |

D10|US 6 198 282 B1 6 March 2001|

Main request - Admission

1. The main request was submitted during oral proceedings before the Board. It is based on auxiliary request 1(vii), that was itself based on auxiliary request 1, both also submitted after notification of the summons to oral proceedings.

2. All these requests constitute amendments to the appellant's case, the admission of which are at the Board's discretion under Articles 13(1) and (2) RPBA 2020.

3. The Board shall exercise its discretion under Article 13(1) RPBA 2020 in view of, inter alia, whether the amendment prima facie overcomes issues raised by the Board without giving rise to new objections. According to Article 13(2) RPBA 2020, any amendment to a party's case after notification of a summons to oral proceedings shall, in principle, not be taken into account, unless there are exceptional circumstances, which the party has justified with cogent reasons.

4. In the present case, these conditions for admission are met for the following reasons:

(a) In the communication that accompanied the summons to the oral proceedings, the Board expressed its disagreement with the findings of the Examining Division, but, nevertheless, considered claim 1 of the main request to lack an inventive step, to be unclear, and to include unallowable amendments, for reasons that had not been previously identified by the Examining Division. The auxiliary requests had, among other issues, the same clarity and amendments issues as the main request.

(b) In that communication, the Board stated that the new issues were potentially remediable, and encouraged the appellant to provide its response in good time ahead of oral proceedings.

(c) The number of new requests submitted in reply was excessive. Nevertheless, at least new auxiliary request 1 was a valid response to the new issues, and could be recognised as overcoming all of them.

(d) However, the Board identified further new issues regarding sufficiency of disclosure and the allowability of amendments, which had not been identified in the summons(although they would have applied), to which the appellant once more reacted promptly, although the number of new requests was, again, excessive.

(e) With each submission, the appellant complied with its obligations under Article 13(1) and (2) RPBA 2020.

(f) The fact that the appellant was given the opportunity to respond to all the new issues ahead of the oral proceedings could, in some small degree, justify the high number of requests filed, since it was unclear which of the issues the Board had identified actually would finally prevent the grant of a patent.

(g) Once the appellant had filed its written submissions on all issues, it was clear that at least claim 1 of auxiliary request 1(vii) was allowable, and which issues remained to be addressed at the oral proceedings.

(h) The final amendment, filed during the oral proceedings, did no more than remove minor inconsistencies between independent claim 1 and dependent claims 2 and 3.

5. Therefore, in consideration of Article 13(1) and (2) RPBA 2020, the Board decided to take the main request, filed during the oral proceedings, into consideration.

The invention as disclosed

6. The invention concerns methods for implementing magnetic resonance imaging (MRI) of in vivo structures containing neurological tissue.

7. It addresses the desire of the in vivo MRI community to apply higher amplitude magnetic field gradients, while avoiding the undesirable bio-electrical effects that strong gradients tend to cause on that tissue (paragraphs [0002], [0019] and [0031]).

8. According to the invention, this is achieved by changing the gradients very rapidly. Concretely, if such changes are carried out over time periods of less than 10 microseconds, they are too fast for the neurological tissue to change its polarization state and are, therefore, effectively ignored (paragraphs [0034,0035] and [0080,0081]).

9. Hence, at such short time scales, magnetic field gradient pulses of any amplitude can, theoretically, be applied, without eliciting undesirable bio-electrical effects. This includes amplitudes significantly above those employed in the prior art (paragraphs [0033],[0036], [0085] and [0086]).

10. The magnetic field gradient pulses employed in the prior art methods described in paragraphs [0003] - [0016] are said to have significantly longer rise and fall times, with the result that bio-electrical effects can be triggered.

11. At those (longer) time scales, certain threshold values for the amplitude of the magnetic field gradients, determined based on accepted theoretical models of the response of physiological tissue to magneto-stimulation, need to be observed, if bio-electrical effects are to be avoided (paragraphs [0012-0015]).

12. Consequently, the invention shortens the time needed for in vivo MRI, and increases spatial resolution (paragraphs [0018-0022]).

Main request, claim 1 -Clarity and Amendments' allowability

13. Claim 1 defines a method of implementing magnetic resonance imaging comprising generating, and applying to living neurologic tissue, a sequence of magnetic field gradient pulses with rise and fall times of less than 10 microseconds, and with an amplitude between 200 mT/m and 1000 mT/m.

14. It is based on original claim 5, with clarifications based on paragraphs [0080], [0081] and [0084], and further limitations based on Figure 7 and paragraphs [0084-0086].

15. The clarifications amount, in essence, to:

(a) the replacement of in such a small time so as to fail to solicit a response from the neurological tissue exposed thereto, which is formulated in terms of the desired result, by in less than 10 microseconds, which enables the result (see paragraphs [0080,0081] and [0084]); and

(b) the alignment of the terminology in the claim to that in paragraphs [0080,0081] and [0084].

16. The further limitations are to the amplitude of the magnetic field gradient pulses. It was originally defined as at least 1mT/m, but is now defined as at least 200 mT/m and not more than 1000 mT/m.

17. A direct basis for the upper limit of 1000 mT/m can be found in paragraph [0086] of the application, which teaches that while the magnitude of the magnetic field is theoretically unbounded at its upper limit, it is foreseeable that the magnitude may be 1000 mT/m or less.

18. Concerning the lower limit, original figure 7 and paragraph [0084] disclose a magnetic field gradient pulse according to the invention, with an amplitude 200mT/m.

19. Limiting an originally disclosed broader range using an isolated value taken from an example may be allowed, if it does not present the skilled person with information that goes beyond the content of the original disclosure (see Case Law Book II.E.1.5.2).

20. This is the case with the isolated value of 200 mT/m, used to limit the broader range starting 1 mT/m to the sub-range starting at 200 mT/m. The reasons for this are the following:

(a) As already indicated, the application teaches that, at time scales too short for bio-electrical effects to be triggered, any amplitude of the magnetic field gradient pulse may (theoretically) be employed, including amplitudes significantly higher than those employed in the prior art (paragraphs [0033],[0036], [0085] and [0086]).

(b) That such high amplitudes are particularly advantageous embodiments can be deduced from the explicitly-stated desire to reduce scan times and increase spatial resolution (paragraphs [0018-0022] and [0031]).

(c) The skilled person, therefore, understands the disclosure in connection to figure 6, depicting an example of a prior art magnetic field gradient pulse, and figure 7, depicting an example of a pulse according to the invention, as consolidating this general teaching with numerical values representative of the amplitudes and ranges alluded to in the general parts of the disclosure.

(d) Finally, the statement in paragraph [0086] that while the magnitude of the magnetic field is theoretically unbounded at its upper limit, it is foreseeable that the magnitude may be 1000 mT/m or less, confirms that the disclosure is not limited to the isolated value indicated.

21. Hence, the skilled person understands, from the original disclosure, that amplitudes from 200mT/m to 1000mT/m constitute particularly advantageous embodiments, and is not presented, by this particular selection, with new information.

22. Therefore, claim 1 complies with Article 123(2) EPC.

23. Claims 2 and 3 find basis in original claims 7 and 8, with minor clarifications for alignment with the wording of claim 1 and, hence, also comply with Article 123(2) EPC.

Main request, claim 1 - Sufficiency of disclosure

24. During the appeal proceedings, the possibility of claiming an amplitude range without an upper bound was considered. The point of concern was whether the original disclosure provided the skilled person with sufficient information for the implementation of the invention for arbitrarily high amplitudes.

25. While an open-ended range does not necessarily result in a lack of sufficiency of disclosure, the present open range is not limited in practice, as was the case in T 1943/15, mentioned by the appellant. In that case the quantity defined was a quotient which, by definition, could not take arbitrarily high or low values.

26. The fact that the application explains, in paragraph [0086], that the amplitude of the magnetic field gradient pulse is theoretically unbounded at its upper end does not mean the skilled person is able to put it into practice for arbitrarily high amplitudes.

27. The disclosure of paragraphs [0054-0065], in combination that of paragraph [0028], as well as that of paragraphs [0074-0079], in combination with that of paragraph [0030], are sufficient to enable the generation of a sequence of pulses with rise and fall times of less than 10 microseconds, at a variety of amplitudes including above those employed in the prior art. Still, such disclosures does not enable the generation of arbitrarily high magnetic field gradients.

28. The present main request avoids this issue, by means of the upper limit of 1000 mT/m.

29. The Board finds that the above-mentioned passages of the application are sufficient to enable the skilled person to generate magnetic field gradients pulses with rise- and fall-times of less than 10 microseconds and an amplitude of less than 1 T/m.

30. Therefore the main request complies with Article 83 EPC.

Main request, claim 1 - Inventive step

31. An assessment of inventive step requires consideration of the state of the art (Article 56 EPC).

32. Of the documents on file, D7-D10 relate to in vivo MRI and are furthermore concerned, as is the application, with the need to avoid the triggering of undesired bio-electric effects, in particular in nerve tissue. These documents also have the most features in common with the subject-matter of the present main request. As such, documents D7-D10 represent the most appropriate starting points for an assessment of inventive step.

33. Claim 1 of the main request differs from the disclosure of each of D7-D10 by the properties of magnetic field gradient pulses. Concretely, none of these documents discloses the use of pulses with rise and fall times of less than 10 microseconds and amplitudes between 200 mT/m and 1000 mT/m.

34. As already mentioned, pulses with such properties enable quicker and higher spatial resolution in vivo acquisitions, while avoiding to elicit undesirable physiological responses from the neurological tissue.

35. The question to be answered is then whether, having regard the state of the art as disclosed in D7-D10, the skilled person would have employed a sequence of magnetic field gradient pulses with the recited properties, when seeking to achieve either of the above-mentioned results.

36. For reasons that will be further detailed below with regards to each of the documents, the Board has come to the conclusion that, even if the skilled person would (at least in view of the disclosures of documents D8 and D9) have employed pulses with rise and fall times in the microsecond range, at least to reduce the acquisition times, those pulses would still have been of an amplitude significantly below the defined range.

37. This is because the prior art does not teach, or suggest, that by employing magnetic field gradient pulses with rise and fall times of less than 10 microseconds, amplitudes significantly higher than the thresholds determined based on accepted physiological models could be employed without eliciting a physiological response.

38. When examining other requests, the Examining Division came to the conclusion that, having regard the prior art disclosure of document D7, the skilled person would have considered employing magnetic field gradient pulses with rise and fall times of less than 10 microseconds.

39. The Board does not share this view and furthermore notes that the Examining division failed to indicate the technical effect associated with the difference identified.

40. Document D7 is concerned with the simulation of the electric field induced in neurological tissue by a magnetic field gradient pulses.

41. The results of such simulations are depicted in figures 7 and 8 of D7, for two amplitudes of said magnetic field gradient pulse (10mT/m and 40mT/m), as a function of the rise time over which the magnetic field is changed. The simulated induced electric field curves are depicted superimposed on curves modelling the stimulation threshold of neurological tissue, both varying with the pulse rise time.

42. From the scale of figures 7 and 8, as well as from the corresponding discussion on page 2795, a reliable interpretation of the results for rise times significantly below 100 microseconds, in particular below 10 microseconds, is not possible. That a possible crossing of the lines depicted in figure 8 at rise times significantly below 100 microseconds is accorded no relevance in D7 is, in the Board's view, also made clear by the explicit statement, on page 2795, that between 0 and 800 microseconds, the induced electric field greatly exceeds the nerve stimulation threshold.

43. The discussion of the results provides the skilled person seeking to avoid bio-electric effects with no motivation to deviate from the rise time scales disclosed, especially not in the direction of lower rise-times.

44. In fact, D7 teaches the skilled person that the shorter the pulses rise- and fall-times, the lower the pulse amplitudes need to be; or, conversely, that the higher the amplitudes of the magnetic field gradient pulses, the longer the pulse rise- and fall-times are required to be.

45. Therefore, starting the disclosure of document D7 the skilled person would not have arrived at a sequence of magnetic field gradient pulses with rise- and fall-times of less than 10 microseconds, let alone combined with an amplitude between 200 and 1000 mT/m.

46. D10 also discloses magnetic field gradient pulses with rise- and fall-times on the order of hundreds of microseconds, and also teaches that, for such time scales, higher magnetic field gradients, and hence higher spatial resolution, require longer rise- and fall-times, or lower slew rates, as can be derived from the disclosure of figure 5 and column 5 lines 56-63, taking into consideration the disclosure of figure 3 and column 3, line 60 to column 4, line 7. In fact, for the highest slew rate indicated in figure 5, of some 35 G/cm/ms, one obtains, based on the modelled physiological limit curve 12, a maximum threshold amplitude of some 3.5 G/cm (corresponding to 35 mT/m), from which a minimum pulse width of 100 milliseconds is obtained.

47. Figure 5 of D10 also indicates that, for higher amplitudes, significantly longer rise-times would be needed. For instance, for the maximum amplitude depicted of 10 G/cm (100 mT/m), a pulse rise-time of more than 500 microseconds would be required.

48. Hence, in view of the disclosure D10, the skilled person would not have employed pulses with rise- and fall-times of less than 10 microseconds, let alone in combination with amplitudes within the range of 200 mT/m to 1000 mT/m.

49. D9 reports on experimental studies on humans, validating the physiological models behind the threshold curves for pulses of rise times below 100 microseconds.

50. The experimental evidence presented in D9 (figures 6 and 7) does not disclose the application of magnetic field gradient pulses with rise-times as low as 10 microseconds. It does, however, present, on table 1, an extrapolation of those models to rise-times below 10 microseconds.

51. It is debatable whether the skilled person would, in view of this extrapolation, have employed magnetic field gradient pulses with rise- and fall-times scales below 10 microseconds, given the lack of experimental validation.

52. In any case, even if she did, she would have employed magnetic field gradient pulses of an amplitude at most up to the estimated threshold values indicated in table 1. This would still fall significantly below the range defined in the claim, for the following reasons:

(a) To all three threshold values of the parameter dB/dt, indicated for a ramp times of 10 microseconds or less, the corresponding amplitude of the gradient Bmax=dB/dt*dt is less than 8 mT.

(b) The amplitude in mT/m is obtained by dividing the Bmax in mT by a distance of the order of tens of centimeters, related to distance (field of view) over which the gradient of the field changes linearly. Considering a distance of some 20 cm (see e.g. figure 1 of D9), one obtains an amplitude of Bmax of less than 40 mT/m.

53. Hence, even if, in view of the disclosure of document D9, the skilled person would have employed magnetic field gradient pulses with rise- and fall-times below 10 microseconds, she would not have employed amplitudes within the range recited in the claim.

54. D8 reports, on pages 224-228, table 4 and figure 18, on the recommendations by different countries on the time-varying magnetic fields dB/dt to be applied in in vivo MRI, in view of the need to avoid the triggering of undesirable bio-electric effects on living tissue. Different thresholds are indicated for different ranges of a parameter tau, corresponding to twice the rise-time of a magnetic field gradient pulse.

55. It is immediately apparent from figure 18 of D8, that the application of pulses with tau< 20 microseconds, corresponding to rise- and fall-times of less than 10 microseconds, are both contemplated and regulated.

56. The person skilled in the art would, then, have considered employing magnetic field gradient pulses with rise- and fall-times in the microseconds range, when addressing the problem of reducing acquisition times.

57. She would, however, not have employed amplitudes above those corresponding to the threshold values indicated, which (once more) are significantly below those in the claim. This is because she would have understood, from the disclosure of a level of no concern and a level of concern (in table 4), that the triggering of undesired firing of nerves would be almost unavoidable above the latter values.

58. In fact, in view of the need to avoid undesirable bio-electric effects on the living tissue imaged, it is even questionable whether the skilled person would ever have considered pulses of an amplitude within the range of concern. Still, even considering the extreme example, with variations of 1330 T/s applied in rise and fall times of 10 microseconds (IEC threshold for level of concern), the amplitude of the pulses would still be less than 13 mT, which (over some 20 cm) leads an amplitude of of less than 65 mT/m.

59. Hence, also in view of the disclosure of document D8, the skilled person would not have arrived at employing magnetic pulse gradients with rise and fall times of less than 10 microseconds and amplitudes between 200 mT/m and 1000 mT/m in an obvious manner.

60. Therefore, the subject-matter of claim 1 of the main request entails an inventive step.

Final comments on the decision appealed

61. The appealed decision was not based on present main request. Its reasoning also does not impact this decision, other than indirectly in two points.

62. One of those points is the reasoning on inventive step over the disclosure of D7, in paragraph 2.3.2 of the appealed decision, which could be seen as indirectly impacting the inventive step assessment of the present main request (see paragraphs 38 to 45 above).

63. The other relates to the decision of the Examining Division not to consent to the auxiliary request 5, submitted to them during oral proceedings(appealed decision at 2.6, 2.6.1, and 2.6.2).

64. The statement at 2.6.1 of the decision, that a request limiting the gradient amplitudes to above 100 mT/m would have necessitated a further search seems to be incorrect, for the following reasons:

(a) The supplementary European search report established for this application indicated that a full search was carried out. Such a search covered original method claims 4-8, defining an interval with an open upper end for the magnitude of the magnetic field gradients, under which the claims of the present request fall.

(b) Even though the original claim defined a broad range of magnetic field gradient amplitudes, the original application emphasised the desirability of higher-amplitude pulses and made the increases aimed at concrete with the disclosure of specific examples (see, paragraphs [0019] and [0031], and figures 6 and 7 and paragraphs [0082-0086]). In this context, if the Search Division had not covered high amplitudes in its search, it would have indicated as much.

65. It is also noted that previous requests had already indicated the applicant's intent to pursue high-amplitude gradients, or high slew rates. In fact, the late introduction of documents D7 and D8 is a result of the convergence of the proceedings in that direction.

66. Therefore, only the reasons presented under item 2.6.2 of the decision (in apparent contradiction to the statements at 2.6.1) support the decision not to consent to the fifth auxiliary request. The lateness of the submission and its prima facie unsuitability for solving all the pending issues, were appropriate considerations.

67. The Board further notes that the fifth auxiliary request was attached neither to the decision, nor to the minutes of the oral proceedings, and there is no record of it in the file. This, effectively prevents the Board from fully revising the decision taken.

68. Finally, the reasons why the request for a continuation of the proceedings in writing was rejected are not apparent from the decision, but are, fortunately, recorded in the minutes of oral proceedings. When faced with a new prior art document (D7), two weeks ahead of oral proceedings, the applicant had been offered the option of continuing in writing, but had rejected the offer. This renders moot the appellant's argument that its auxiliary request 5 should have been considered since D7 was also introduced very late.

Order

For these reasons it is decided that:

The decision under appeal is set aside.

The case is remitted to the Examining Division with the order to grant a patent on the basis of the main request, submitted during oral proceedings before the Board, the original drawings, and a description to be adapted as necessary.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility