Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
Website
cancel
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Innovation against cancer
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0291/89 14-05-1991
Facebook X Linkedin Email

T 0291/89 14-05-1991

European Case Law Identifier
ECLI:EP:BA:1991:T029189.19910514
Date of decision
14 May 1991
Case number
T 0291/89
Petition for review of
-
Application number
81902770.7
IPC class
C01B 7/13
Language of proceedings
EN
Distribution
-

Download and more information:

Decision in EN 617.53 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Preparation of substantially anhydrous iodine compounds

Applicant name
Eastman Kodak Company
Opponent name
Hoechst AG
Board
3.3.02
Headnote
-
Relevant legal provisions
European Patent Convention Art 83 1973
European Patent Convention Art 56 1973
Keywords
Inventive step (affirmed) - non-obvious improvement
Catchword
-
Cited decisions
T 0219/83
T 0014/83
T 0198/88
T 0002/83
Citing decisions
T 0371/02
T 0342/98

I. European patent No. 64504 was granted with three claims on the basis of European patent application 81 902 770.7. Independent Claim 1 reads as follows:

"Process for preparing an anhydrous iodine compound which comprises reacting, under substantially anhydrous conditions, hydrogen with iodine in a non-alcoholic, organic solvent in the presence of a homogeneous rhodium catalyst, there being present no heterocyclic aromatic compound in which at least one heteroatom is a quaternary nitrogen atom and no quaternary organophosphorous compound."

II. The Appellant (Opponent) filed a notice of opposition requesting revocation of the patent on the grounds of lack of novelty with respect to an earlier European patent application forming part of the state of the art as defined in Article 54(3) and lack of inventive step (Article 56 EPC). In support of this latter ground the Appellant cited, inter alia, the following documents:

(2) DE-A-2 441 502 (4) US-A-4 046 807 corresponding to the German patent application (5) DE-A-2 450 965.

III. The Opposition Division rejected the opposition. The claimed process was regarded as novel over the earlier European application. In its decision the Opposition Division pointed out that the use of hydrogen was neither disclosed nor suggested in (2) and that the process of (4) (or (5)) involved the addition of hydrogen to the carbon oxide reaction gas in order to suppress the formation of soot and carbon dioxide observed occasionally at reaction temperatures of above 150°C. However, the problem underlying the patent was to find a method for preparing anhydrous iodine compounds in a good yield and at reasonable reaction rates by the direct reaction of hydrogen with iodine. In the Opposition Division's view, documents (2) and (4) were not concerned with this problem and, therefore, could not give an incentive to solve it as set out in Claim 1. In particular, it was not predictable from these documents that good yields at reasonable reaction rates could be achieved by the claimed process.

IV. The Appellant lodged an appeal against this decision. In his statement of grounds he relied upon a document cited for the first time at the appeal stage, namely (6) US-A- 3 848 065, and contended that the process of Claims 1 to 3 of the patent in suit did not involve an inventive step in view of documents (2), (4) and (6) for the following reasons:

According to document (2) the iodide could be added also in form of elementary iodine, carbon monoxide being used in a practically pure form. However, the skilled person concerned with the carbonylation process was aware of the advantages obtained by replacing a part of the carbon monoxide with hydrogen since they were indicated in (4). If only the conversion of iodine to anhydrous iodine compounds was important to the skilled person and not the production of acetic anhydride, then he would have chosen a higher hydrogen partial pressure in view of the teaching of (4). Furthermore, he would have tried to decrease up to nought the content of carbon monoxide in the process of (2) as this gas does not take part in the reaction of formation of iodine compounds. Thereby, he would have arrived at the expected result that the reaction could be carried out in the absence of CO. The skilled person would have been directly encouraged to perform such experiments in view of (6) which disclosed the reaction of iodine with hydrogen in the presence of a rhodium catalyst.

V. During the oral proceedings held on 14 May 1991, the Appellant raised an objection of insufficiency of disclosure against the process as defined in Claim 1 of the patent. In this respect he stressed that in the absence of the disclaimed compounds the reaction of iodine with hydrogen could lead to the desired result only if small cations such as Li cations were present in the reaction medium. However, Claim 1 did not mention the presence of a lithium salt as promoter so that the desired product could not be obtained.

As regards inventive step, the Appellant referred to the following passages of (2): page 5, lines 15-23; page 7, lines 8-9; page 8, second paragraph; page 11, lines 8-16; page 13, lines 1-4 and 15; page 15, lines 5-18; example 12 which, in his opinion, suggested that an alkyl iodide could be formed under anhydrous conditions by addition of iodine and contact with a homogeneous Rh catalyst in the presence of a promoter such as lithium acetate. He argued that in case of halogen loss the skilled person could have determined the iodine amount which was necessary to obtain the alkyl iodide instead of the acetic anhydride. The Appellant further stressed that elementary iodine, hydrogen and a promoter were present in the process of (4). In his view it could be derived from this document that acetic anhydride and an anhydrous alkyl iodide was formed as soon as the water was consumed.

VI. The Respondent's arguments can be summarised as follows:

The ground of insufficiency of disclosure was put forward for the first time during the oral proceedings so that the Respondent did not have the opportunity to deal with this matter before or to ask instructions thereupon. Example 5 of the patent showed anyway that the desired product could be obtained with a very good yield even in the absence of lithium iodide.

In the process of document (2) the alkyl iodide was regenerated and was thus neither consumed nor exhausted. The net reaction was, therefore, one between a carboxylic acid ester or ether and carbon monoxide. Therefore, there was no production of hydrogen iodide, alkyl iodide or lithium iodide except where the small amount required for the working of the process was formed in situ. Even in such cases no hydrogen was used and the reaction was quite different from the present invention. There was nothing in (2) which would have suggested that iodine compounds could be produced instead of acid anhydrides nor that hydrogen could be substituted for CO. A fortiori, there was no suggestion that in such a case a Rh catalyst would be preferred over other noble metals for the production of iodine compounds.

In the process of (4) carbon monoxide was one of the major reactants not hydrogen. Furthermore, the only advantage given in (4) in connection with the presence of hydrogen was the soot removal. From a comparison of example 13 with the other examples it could be concluded that the worst possible yield of acetic anhydride was obtained in the presence of hydrogen. Even if an alkyl iodide was formed in the carbonylation reactions of (2) or (4), the yield thereof was very low and, therefore, these documents could not suggest the claimed solution to the problem of increasing the yield of the desired iodine compounds.

VII. The Appellant requests that the decision under appeal be set aside and the patent be revoked.

The Respondent requests that the appeal be dismissed.

1. The appeal is admissible.

2. The Appellant's objection that the process as defined in Claim 1 does not lead to the desired products (cf. point V above) was submitted for the first time during the oral proceedings before the Board, i.e. at a very late stage of the proceedings. When questioned by the Board about the reasons for this tardiness the Appellant indicated that it was found only about one week before oral proceedings that in the absence of the disclaimed compounds the active complex of the rhodium catalyst can be formed only if small cations such as lithium cations are present in the reaction medium.

Although these arguments were presented as an objection concerning sufficiency of disclosure (Article 100(b)), they raise in fact the question whether Claim 1 recites all the features necessary for the obtention of the desired products, i.e. whether this claim meets the requirements of Article 84 EPC. However objections based upon Article 84 do not constitute a ground of opposition.

In view of the Appellant's strong reliance on this point during the oral proceedings, the Board has examined these belatedly submitted arguments on its own motion.

First of all the Board observes that, on the one hand, the Appellant's allegation was not supported by any evidence and, on the other hand, it was contested by the Respondent's representative. In this context the latter pointed out that a good yield was obtained in example 5, although the reaction was carried out in the absence of lithium iodide and that it was not clear how far the lithium acetate used as hydrogen iodide "acceptor" was dissociated in the reaction medium of example 5. The Board further notes that, although LiI or Li acetate is present in the reaction medium of the examples, it is not derivable from the patent that the presence of one of these compounds or of lithium cations is necessary for the solution of the problem. Thus, according to column 3, lines 18-24, the ionic rhodium species of the catalyst may be formed by using iodine compounds such as LiI, CH3I, HI or iodine. Moreover according to column 2, line 57 to column 3, line 4 the hydrogen iodide "acceptor" may be methyl acetate instead of lithium acetate and its initial inclusion in the reaction medium is only preferred. Finally, as stressed by the Respondent's representative, owing to the fact that this argument was relied upon for the first time during the oral proceedings the Respondent did not have the opportunity to make tests in order to verify the Appellant's allegation and to take position upon this matter.

Under these circumstances and in the absence of evidence provided by the Appellant who has the onus of proof, the patent proprietor is given the benefit of the doubt (cf. decision T 219/83, OJ EPO 1986, 211).

As regards sufficiency of disclosure the Board wishes to point out that this question has to be judged not merely on the basis of claims but also on the basis of the description: cf. decision T 14/83, OJ EPO 1984, 105. In the present case the Appellant did not contest that the nine examples of the patent are reproducible and lead to the desired iodine compounds with the desired high yield.

Furthermore, the Board has no reason to doubt that the process as described in the examples is sufficiently disclosed for it to be carried out by a skilled person.

Under these circumstances the requirements of sufficiency of disclosure and of Article 84 are considered to be met.

3. The Appellant further sought to introduce document (6) into the proceedings for the first time at the appeal stage. Although this document was mentioned in the search report, it was neither cited in the notice of opposition nor in the course of the opposition procedure. According to decision T 198/88 (OJ EPO 1991, 254) a document does not automatically form part of the opposition or appeal proceedings if it is merely cited and acknowledged in the contested patent since the opposition procedure is not part of the grant procedure. The same applies obviously to a document which is merely cited in the search report.

After examination of document (6) of its own motion the Board has reached the conclusion that even if it were taken into consideration the outcome of the decision would be the same. Therefore, document (6) had to be disregarded pursuant to Article 114(2).

4. The patent in suit relates to a process for preparing an anhydrous iodine compound by the reaction of hydrogen with iodine in the presence of a noble metal-containing catalyst under anhydrous conditions.

As indicated in the patent in suit it was known to produce anhydrous hydrogen iodide by the direct reaction of iodine vapour with hydrogen over a platinum catalyst at elevated temperatures. After examination of the documents acknowledged in the description, the Board agrees that this known process represents the closest prior art.

Although this method provides HI of high purity, the reaction is slow, conversion is not complete and yields of the desired product are consequently low.

In the light of this prior art, the problem underlying the patent can be seen in providing a method for preparing anhydrous iodine compounds such as hydrogen iodide, methyl iodide or lithium iodide in good yield and at reasonable reaction rates by the direct reaction of hydrogen with iodine in the presence of the noble metal-containing catalyst.

According to Claim 1, it is proposed to solve this problem by carrying out the reaction in a non-alcoholic, organic solvent in the presence of a homogeneous rhodium catalyst, the presence of specific compounds stated in Claim 1 being excluded.

In view of the production rate of hydrogen iodide indicated in examples 1 and 2 of the patent and of the high yields of lithium iodide and methyl iodide stated in table 1 (i.e. 86.4-90%), it appears to the Board that this problem has been plausibly solved by using a homogeneous rhodium catalyst under the claimed conditions.

5. None of the cited documents discloses the production of anhydrous iodine compounds by reacting iodine with hydrogen in the presence of a homogeneous rhodium catalyst. Therefore, the claimed process is novel. This not being in dispute there is no need to give further details.

6. It still remains to examine whether the claimed process involves an inventive step with regard to the teaching of the cited documents.

6.1. Document (2) relates to the manufacture of anhydrides of monocarboxylic acids such as acetic anhydride by carbonylation. A carboxylic acid ester, for example, methyl acetate, or an ether is reacted with an acyl iodide under anhydrous conditions to form the anhydride. The acyl iodide is itself formed in a first reaction step by carbonylation of an alkyl or aryl iodide with carbon monoxide in the presence of a noble metal catalyst (cf. Claims 1-3; page 4, last paragraph; page 5, lines 20-23). The alkyl iodide is regenerated in the second reaction step, separated from the acetic anhydride and recycled (cf. page 6, lines 1-4; page 7, lines 8-9). In a preferred embodiment the two reaction steps are combined, the alkyl iodide and the ester or ether being then introduced into the same reaction zone (cf. page 8, lines 8-18). Document (2) further teaches that the alkyl iodide may also be formed in situ by feeding the necessary iodine amount in the form of another organic iodide, hydrogen iodide, metal iodides, alkali iodides or even elementary iodine (cf. page 8, lines 18-26). Lists of appropriate solvents, promoters and noble metal containing catalysts, a.o. homogeneous rhodium catalysts are given at pages 11 to 13. In example 12 elementary iodine is used and the catalyst is incorporated into the reaction medium as rhodium trichloride hydrate.

As contended by the Appellant and not contested by the Respondent, although (2) is essentially directed to the carbonylation of the ester or ether in order to produce the anhydride, it also suggests that an anhydrous alkyl iodide may be formed by heating the reaction medium comprising iodine, a carboxylic acid ester or an ether, a homogeneous rhodium catalyst and a promoter under anhydrous conditions in the presence of a carbon monoxide atmosphere. Nevertheless, in view of the fact that carbon monoxide is used, it appears that the reaction of formation of the alkyl iodide is quite different from the process involving reaction of iodine with hydrogen. Although it is envisaged in (2) to add an inert diluting gas such as carbon dioxide, nitrogen, methane or noble gases to the carbon monoxide (cf. page 12, second paragraph), it is not suggested to replace a part of the carbon monoxide with hydrogen.

It can further be inferred from (2) that relatively low amounts of the alkyl iodide are produced, since it is regenerated and remains in the system in the case of a continuous process. Even if some loss occasionally happens, then the amount of alkyl iodide necessary to compensate this loss is very small (cf. page 15, first paragraph). As the purpose of this document is to improve the process for manufacturing a carboxylic acid anhydride such as acetic anhydride (cf. page 2, second paragraph) the yield of acetic anhydride is mentioned but there is no indication concerning the yield of alkyl iodide.

It results from the preceding that (2) does not contain any information which could provide the skilled person with an incentive to replace the known platinum catalyst used in the catalytic reaction of hydrogen with iodine to form anhydrous hydrogen iodide by the homogeneous rhodium catalyst used in (2) for a different reaction, in order to improve the yield of the desired anhydrous iodides.

6.2. Document (4) does not relate to the preparation of iodine compounds but, like (2), to that of acetic anhydride. The process comprises reacting methyl acetate and carbon monoxide in the presence of a catalyst containing a noble metal, in particular rhodium or a rhodium compound, and iodine or iodine compounds such as alkyl or acyl iodides. The iodine-containing component of the catalyst may be added as elementary iodine, hydrogen iodide, inorganic salts such as sodium, potassium or cobalt iodides or organo-iodine compounds such as alkyl iodide, especially methyl iodide, or acyl iodides (cf. column 1, lines 24-30; column 2, lines 18-26; column 3, lines 9-20; Claims 1, 5-7). The catalyst is for example RHCl3.3H2O with methyl iodide as iodine component (cf. examples 1, 2-4, 13).

According to (4) the presence of 5 to 50% by volume of hydrogen in the carbon monoxide needed for the carbonylation reaction has the favourable effect of suppressing the slight formation of soot and carbon dioxide which can be observed at temperatures of above 150°C (cf. column 1, line 64 to column 2, line 2). In example 13, where the reaction is performed in the presence of carbon monoxide and hydrogen, the yield of acetic anhydride is, however, substantially lower than in the examples using the same catalyst in the absence of hydrogen. In example 14, methyl iodide and iodine are indeed used as iodine components of the catalyst but the carbonylation reaction is carried out in the absence of hydrogen. Even if under the operating conditions prevailing in the carbonylation process of (4) anhydrous hydrogen iodide and/or an alkyl iodide might be formed as by-product by reaction of hydrogen with iodine in the case where both are present, this is neither disclosed in (4) nor derivable therefrom without knowledge of the claimed solution, since according to (4) hydrogen is added to the carbon monoxide for the totally different purpose stated above. Therefore, in the Board's opinion, the skilled person could not expect in view of the teaching of (4) that the substitution of a homogeneous rhodium catalyst for the known platinum catalyst would improve the yield of anhydrous hydrogen iodide, lithium or methyl iodide obtained by reaction of hydrogen with iodine. Without the expectation of an improvement in the yield of these products the skilled person faced with the problem defined above would not have been prompted to replace the platinum catalyst used for the reaction of hydrogen with iodine by the catalyst disclosed in (4) for the carbonylation of methyl acetate nor to substitute hydrogen for carbon monoxide in the process of (2) (cf. decision T 2/83, OJ EPO 1984, 265).

7. For the preceding reasons, the subject-matter of Claim 1 is considered to involve an inventive step. Claim 1 being allowable, the same applies to the dependent Claims 2 and 3 whose patentability is supported by that of Claim 1.

Order

ORDER

For these reasons, it is decided that:

The appeal is dismissed.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility