Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
Website
cancel
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Innovation against cancer
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0322/87 25-04-1990
Facebook X Linkedin Email

T 0322/87 25-04-1990

European Case Law Identifier
ECLI:EP:BA:1990:T032287.19900425
Date of decision
25 April 1990
Case number
T 0322/87
Petition for review of
-
Application number
79300772.5
IPC class
C08J 5/00
Language of proceedings
EN
Distribution
-

Download and more information:

Decision in EN 861.17 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Method of improving the processability of rigid polymers; melts, solutions and shaped articles prepared according to this method

Applicant name
Imperial Chemical Industries L
Opponent name
1) Bayer AG 2) BASF AG
Board
3.3.03
Headnote
-
Relevant legal provisions
European Patent Convention Art 54 1973
European Patent Convention Art 56 1973
European Patent Convention Art 69(1) 1973
European Patent Convention Art 83 1973
European Patent Convention Art 84 1973
European Patent Convention Art 113(1) 1973
Keywords

Novelty

Inventive step - prior art - laboratory investigations

Catchword
-
Cited decisions
T 0324/88
T 0153/85
T 0068/85
Citing decisions
T 1107/06
T 0993/96
T 1117/10

I. The mention of the grant of the patent No. 5 913 in respect of European patent application No. 79 300 722.5 filed on 4 May 1979 and claiming priority of 26 May 1978 of two earlier applications in Great Britain, was published on 20 July 1983 on the basis of 11 claims.

Claim 1 reads as follows:

"A method of improving the processability of rigid polymers which are capable of exhibiting thermotropic or lyotropic behaviour characterised in that a melt or solution of a rigid polymer is subjected to shear between relatively moving surfaces at an apparent shear rate of at least 100 sec-1, the rigid polymer being in a thermotropic or lyotropic state prior to shearing or being caused to exibit thermotropic or lyotropic behaviour as a result of the applied shear."

II. Notices of opposition were filed on 9 September 1983 by Appellant 1 (Opponent 1) and on 30 November 1983 by Appellant 2 (Opponent 2) against the grant of the patent on the grounds that the subject-matter of the patent in suit was not novel and did not involve an inventive step. It was further objected that, because of the presence of obscure and ambiguous wording in Claim 1 objectionable under Article 84 EPC, the requirements of Article 83 EPC were not met.

These various objections which were emphasised and elaborated in several later submissions were based essentially on the following documents:

(1) Journal of Polymer Science, Polymer Chemistry Edition, August 1976, Volume 14, No. 8, pages 2048 to 2058.

(9) Der Extruder als Plastifiziereinheit, VDI-Verlag, 1977, pages 51 to 61

(12) Contemporary Topics in Polymer Science, 1977, Volume 2, pages 109 to 137.

III. By a decision of 30 June 1987, the Opposition Division maintained the patent in amended form on the basis of new claims filed on 3 May 1985, the amendments consisting in the introduction of the upper limit of 1000 s-1 for the shear rate and in the further indication that a shaped article was fabricated from the melt or solution while the viscosity was reduced as indicated.

Regarding the objection of insufficiency it was stated in the said decision that neither the selection of a suitable material, i.e. a polymer capable of exhibiting thermotropic or lyotropic behaviour, nor the treatment to which the starting material was to be subjected, would present any difficulty to the skilled man.

As far as novelty was concerned, although both the effect of various shear rates on the viscosity of liquid crystal polymers and the fabrication of test pieces from such polymers using a reciprocating screw injection moulding machine were disclosed in document (1), the fact that these features appeared in different sections of the article did not allow the conclusion bo be drawn that the fabrication of test pieces inevitably involved subjecting the polymers to shear rates within the specific range as claimed; besides, no evidence for the performance characteristics of conventional extruders was provided in this respect.

Finally, although it was known that shear-induced orientation and the resulting viscosity reduction did not relax instantaneously, the fabrication of shaped articles utilising such shear effects could not be inferred from the prior art.

IV. The Appellants lodged notices of appeal against this decision on, respectively, 27 August 1987 and 28 August 1987 by telex confirmed in writing on 29 August 1987 and paid the prescribed fee at the same time. The arguments presented in the Statements of Grounds of Appeal filed, respectively, on 26 October 1987 and 30 October 1987, as well as in later submissions, can be summarised as follows:

The exact scope of the process as claimed was unclear regarding both the choice of the starting material and the amount of polymer subjected to shear; moreover, the wording of Claim 1 did not take the viscosity reduction caused by the increase in temperature into account.

As far as the objections of lack of novelty and inventive step were concerned, emphasis was put on the arguments already presented in opposition procedure. During oral proceedings held on 25 April 1990, a document summarising data from previously filed citations and showing the performance characteristics of conventional extruders available at the date of priority of the patent in suit was filed to demonstrate that shear rates of 100 to 1000 s-1 were actually usual in the art, thus implicitly used in the experimental studies referred to in document (1).

V. Following an objection of accidental anticipation by document (1) raised by the Board during oral proceedings the Respondent filed two sets of 7 claims each, respectively as main and auxiliary requests. In Claim 1 according to the main request it was specified that "the use of a 6-oz New Britain 175-TP reciprocating screw machine and a Newbury HV1-25T reciprocating screw machine" was excluded; in Claim 1 according to the auxiliary request it was specified that "such shear as occurs in a reciprocating screw injection moulding machine" was excluded. Moreover, it was specified in these two claims that, as a result of the shear being applied, the viscosity was reduced relative to its value measured at a given temperature without pre-shear.

The Appellants strongly objected to the wording of these claims, especially to Claim 1 according to the main request, whose wording incorporated trade names of machines which were no longer available on the market and whose performance characteristics, therefore, were not exactly known.

VI. The essence of the arguments put forward by the Respondent can be summarised as follows:

The new claims were addressed to a skilled man who would have no difficulty in choosing a suitable polymer, nor in verifying the critical reduction in viscosity. Document (1) did not provide evidence that shear rates within the range of 100 to 1000 s-1 were actually employed. Even if some prior art documents showed that the orientation induced in liquid crystal polymer melts relaxes more slowly than in isotropic polymers, the advantages to be gained from preparing shaped articles by a process involving shear rates within a critical range had not been previously recognised.

VII. The Appellants requested that the decision under appeal be set aside and the patent be revoked in its entirety.

The Respondent requested that the patent be maintained on the basis of the claims filed as main request or on the basis of the claims filed as auxiliary request during oral proceedings.

1. The appeals comply with Articles 106 to 108 and Rule 64 EPC and are, therefore, admissible.

Main Request

2. The current version of the claims does not give rise to objections under Article 123 EPC.

As compared to the granted version, Claim 1 firstly differs by being directed to a method of fabricating a shaped article from rigid polymers; this object of the process is disclosed on page 3, lines 3 to 6 of the specification as granted, corresponding to page 4, lines 4 to 10 of the original documents. The change of "shear" into "pre-shear", which aims at identifying the first step of the process more clearly, is justified in view of page 4, lines 12/13 and 22, respectively page 7, lines 10 to 12 and 29, as well as the Tables of Examples 2, 3 and 5 to 9, respectively Examples 2, 3, 5, 6 and 8 to 10. The upper limit of 1000 s-1 for the shear rate is the preferred value mentioned on page 4, line 4 and Claim 9, respectively page 6, line 32 and Claim 10. The resulting reduced viscosity relative to the viscosity measured at a given temperature without pre-shear can be regarded as adequately supported in view of page 3, lines 3 to 9, respectively page 4, lines 4 to 15, and the values of the apparent viscosity with and without pre-shear in the Tables of Examples 3, 5 and 6, respectively Examples 3, 5 and 6. Last, the exclusion of "the use of a 6-oz New Britain 175-TP reciprocating screw machine and a Newbury HV1-25T reciprocating screw machine" is an admissible disclaimer corresponding to the machines mentioned in document (1) on page 2056, Table VII, symbols a and b.

Claim 2 results from the combination of Claims 3 and 9 of the patent, corresponding to original Claims 4 and 10 of the application as filed. As to Claims 3 to 7, they correspond to Claims 4 to 8 of the patent as granted, respectively Claims 5 to 9 of the originally filed documents.

3. The introduction into Claim 1 of disclaimers for the use of reciprocating screw machines identified by their trade names makes the wording of this claim fundamentally unclear. The presence of such trade names is objectionable insofar as these words merely denote the origin of the machines, but not the actual shear rates resulting from the use thereof; moreover, since these machines are no longer available on the market, it is impossible to know their exact performance characteristics and therefore the exact scope of what is disclaimed, and consequently the scope for which protection is sought.

For this reason, the wording of Claim 1 is objectionable under Article 84 EPC, thus certainly not clearly allowable within the meaning of the Decision T 153/85, "Alternative claims/AMOCO", of 11 December 1986 published in OJ EPO 1988, 001. Following the principles set out in that decision regarding the filing of alternative claims at a late stage (points 2.1 and 2.2), the Board refuses to consider the set of claims submitted as Main Request.

Auxiliary Request

4. Claim 1 according to the Auxiliary Request differs from that according to the Main Request solely in that its disclaimer generally excludes the use of such shear as occurs in a reciprocating screw injection moulding machine. Such a disclaimer is permissible since it corresponds to the disclosure in document (1) (page 2054, paragraph 2, lines 4 to 6). Since Claims 2 to 7 are identical to Claims 2 to 7 according to the Main Request, they are formally acceptable for the reasons given above.

This means that no objection arises having regard to Article 123 EPC.

5. The objections raised by the Appellants under Article 83 EPC in combination with Article 84 EPC cannot be accepted, since neither the selection of an appropriate polymer, nor the treatment to which the latter is to be subjected would present any difficulty for the skilled man carrying out the teaching of the patent in suit.

5.1. From the wording of Claim 1 it appears that the patent in suit concerns a two-step method of fabricating a shaped article. The first step comprises shearing a polymer melt or polymer solution between relatively moving surfaces at an apparent shear rate of 100 to 1000 s-1 to reduce its viscosity; the second step consists in the fabrication of a shaped article while the viscosity still has a reduced value induced by shearing. In the Board's view, this cannot be construed as applying to "at least part of the melt", but relates unambiguously to the whole melt or solution. As to the starting material, it is generally defined in the description of the patent in suit as a solution or melt of a rigid polymer capable of exhibiting thermotropic or lyotropic behaviour, i.e. of a polymer which is in a thermotropic or lyotropic state prior to shearing or which acquires this behaviour as the result of being subjected to shear within the range of 100 to 1000 s-1 (page 2, lines 33 to 37; page 3, lines 15 to 20). More specifically, the description mentions (page 3, lines 24 to 43) that rigid polymers suitable for use in the claimed process are based on the recurring unit [ X A ] wherein X is an aromatic radical, optionally substituted, and A represents either an atom or a group of atoms and assumes a configuration wherein its outgoing bonds are either parallel or form an angle of at least 120°; it further indicates the requirements in terms of glass-rubber transition temperature and intrinsic viscosity which the rigid polymers to be used as solutions and melts have to meet (page 3, lines 51 to 53; page 3, line 64 to page 4, line 1). On this basis the skilled man would have no difficulty in selecting a suitable rigid polymer. As to the treatment to which the thermotropic melt or lyotropic solution is subjected, it only involves conventional processing within a relatively narrow range of shear rates, as apparent from the various examples.

5.2. The fact remains that the wording of the claims, even interpreted in the light of the description within the meaning of Article 69 EPC, does not provide more than structural and physical requirements which are necessary, but not sufficient to identify which polymer melts and solutions are likely to respond to the shearing operation and which are not. As can be implied from the description (page 2, lines 4 to 6 and 55 to 58), not all rigid polymers are capable of exhibiting thermotropic behaviour, whether induced or natural. The feature "capable of exhibiting thermotropic or lyotropic behaviour" in the preamble of Claim 1 corresponds in fact to a functional characterisation of the polymer. Such functional features are permissible in a claim if a more precise definition is not otherwise possible without restricting the scope of an invention, and if they provide sufficiently clear instructions for the skilled person to reduce them to practice without undue burden (cf. Decision T 68/85, "Synergistic herbicides/CIBA GEIGY", OJ EPO 1987, 228). In the present case, the aforementioned prerequisites are met, since, as the Respondent put forward in the observations filed on 3 May 1985 in opposition procedure (page 1, paragraph 3), all the skilled man, wishing to determine whether a given polymer falls within the claim or not, has to do is to observe the behaviour of that polymer at shear rates between 100 and 1000 s-1 between relatively moving surfaces.

5.3. Further, by specifying that as the result of the shear being applied the viscosity is reduced relative to the viscosity measured at a given temperature without pre-shear, the wording of Claim 1 avoids any ambiguity between temperature-induced viscosity reduction and pressure-induced viscosity reduction. It is thus clear that the subsequent fabrication of shaped articles is based on the latter phenomenon only.

5.4. In view of the foregoing, the objection of insufficient disclosure within the meaning of Article 100(b) EPC is unfounded.

6. The issue of novelty with regard to the teaching of document (1) was raised on the basis of new evidence submitted during oral proceedings.

6.1. Document (1) can be regarded as an investigation of various properties, especially mechanical properties, of injection moulded polyethylene terephthalate (PET) modified with p-hydroxybenzoic acid (PHB). The melt viscosity of these copolymers is determined for various amounts of PHB and at shear rates between 1 and nearly 105 s-1 (page 2049, Figures 1 and 2). It appears that PET containing 60 mole% PHB is particularly shear-sensitive and that at a shear rate of 1000 s-1 the melt viscosity is less than 5% that of non-modified PET; this behaviour is attributed by the authors to the presence of liquid crystals (page 2049, line 9 to page 2050, line 6). It is further specified that the type of injection moulding machine used to mould copolyesters modified with up to 90 mole% PHB affects the mechanical properties of these polymers (page 2054, paragraph 2, lines 1 to 6). Three different injection moulding machines are mentioned, including two reciprocating screw injection moulding machines, for which the cylinder temperatures are indicated (page 2056, Table VII, footnotes a and b). This raises the question whether the various properties listed in Table VII were obtained using conditions falling within the scope of Claim 1 regarding both the shear rate and the screw back time.

6.2. The evidence whether the screw inevitably rotates at a speed sufficient to generate a shear rate within the terms of Claim 1 cannot be provided directly from the screw driven injection moulding machines mentioned in document (1), because these types of apparatus are no longer available on the market. It is therefore necessary to work out their performance characteristics on the basis of data and information related to the equipment commonly used at the date of publication of document (1), i.e. in 1976.

6.2.1. According to document (9) (page 52, equation (31)), the shear applied to the whole melt or minimum shear rate in a screw injection moulding machine is given by the equation =fg D n h wherein D and h are respectively the diameter and the pitch of the screw, n is the screw speed (rpm) and fg is a correction factor which takes the shear rate distribution in the main channel into account.

This equation was applied to the screw driven injection moulding machine described in a technical information sheet published on 21 November 1974 and submitted by the Appellants during oral proceedings. The experts representing the parties agreed that a value of 1.0 or 1.5 for fg would be a fair approximation and that 120 rpm for n would be reasonable, but took different values for the ratio D : h. Whereas the Respondent assumed that this ratio would be about 8 on the basis of the drawing on page 3, the Appellants took the actual figures for these parameters from the Table on page 4 of this document. In the Board's view, the latter interpretation is undoubtedly correct, since the Respondent's calculation is based on a schematic representation of the screw which does not necessarily respect the exact proportions thereof.

On the basis of the Appellant's calculation, one obtains shear rates of at least 150 s-1, which falls within the range envisaged by the Respondent.

6.2.2. From a procedural point of view the Respondent raised the question of the admissibility of this new evidence during oral proceedings. In the Board's view, although the technical information sheet is a new document as such, it does not disclose more than the features of a standard screw driven injection moulding machine available at the date of publication of document (1). The new document only helps to demonstrate that the reciprocating screw machines referred to in document (1) could not be distinguished by their performance characteristics from conventional screw injection moulding machines, as was repeatedly alleged by the Appellants. Moreover, it must be emphasised that the result of the calculations made during oral proceedings is not the basis of a new argument or objection, but merely confirms the results obtained by using formula (31) of document (9) already filed in the Annex to the Statement of 20 December 1986.

As the Board appreciated in the non-published decision T 324/88 (points 5 and 8) of 8 February 1989, a submission filed at a late stage which merely confirms an evidence already on file cannot be regarded as a new or late filed evidence and therefore does not contravene the requirements of Article 113(1) EPC. For this reason, the Board regards the evidence provided during oral proceedings not as a new argument, but as a confirmation of results previously filed.

6.2.3. The Board is aware that the evidence provided by the Appellants is nothing more than an indirect estimation of the shear rates produced by the reciprocating screw injection moulding machines mentioned in document (1) on the basis of the technical features of similar machines. However, the demonstration makes it sufficiently evident that the shear rate to which the melt is subjected during the moulding operation described in document (1) comes within the terms of Claim 1.

6.3. As the Respondent put forward in the counterstatement filed on 23 March 1990 (page 3, paragraph 4), in the screw driving injection moulding process the screw is used as a pump to deliver material into a reservoir before it is injected into the mould. After a shot has been injected into the mould, the screw is screwed back to pump the next shot into the reservoir. It is during the screw back step that shear between relatively moving surfaces is applied. In conventional injection moulding, the screw back time is of the order of one or two minutes, which means that the first portion of the melt to enter the reservoir has a period of one or two minutes to relax prior to injection into the mould.

This period should be compared with the actual relaxation period, i.e. the time interval before the viscosity reverts to its original pre-sheared level. According to the patent in suit (page 3, lines 10 to 14), typical relaxation periods can vary between 1 and 10000 seconds, but are normally in the range of from 10 to 100 seconds.

These figures are of the same order of magnitude as the screw back time and overlap to a large extent, which means that the moulding operation is carried out whilst the viscosity may well be in the viscosity reduced state. Contrary to the Respondent's argument in the above counterstatement, abnormally short screw back times are thus not at all necessary to operate within the terms of Claim 1.

6.4. In view of these conclusions, it must be assumed that in the injection moulding process disclosed in document (1) the reciprocating screw machines were operating at a speed sufficient to generate a shear rate within the range as claimed and that the treated melt was fabricated whilst the shear induced viscosity reduction was still available. The subject-matter as defined in Claim 1, according to which the shear as occurs in a reciprocating screw injection moulding machine is explicitly excluded, is thus novel.

7. It still remains to be examined whether the subject-matter of the patent in suit involves an inventive step with regard to the teaching of the cited documents.

7.1. The patent in suit concerns a method of fabricating a shaped article from rigid polymers which are capable of exhibiting thermotropic or lyotropic behaviour. The fabrication of shaped articles is disclosed in document (1) which the Board regards as the closest state of the art. As noted above, that document deals first with the variation of melt viscosity according to the degree of modification of PET with PHB as well as shear rates applied (Figures 1 and 2), then with various aspects of injection moulding, including the mechanical properties of the copolyesters (pages 2050 to 2057). Emphasis is put on tensile strengths and flexural moduli of injection moulded specimens of PET modified with 40 to 90 mol% PHB (page 2050, paragraph 3 and Table II). Even if one regards the two sections of this article as relating to the successive steps of a single process, nothing suggests a necessary continuity between these steps, i.e. that the moulding operation should follow the mechanical treatment of the polymer immediately. In this respect, thus, the prior art process is merely conventional.

With regard to this teaching the problem underlying the patent in suit may thus be seen in providing a process wherein the processability of the polymer would be improved without impairing the good mechanical properties of the moulded article.

According to the patent in suit this problem is solved by subjecting a melt or solution of a rigid polymer capable of exhibiting thermotropic or lyotropic behaviour to pre-shear between relatively moving surfaces at a specific shear rate between 100 and 1000 s-1 and carrying out the moulding operation by normal techniques while the viscosity is still reduced as a result of the applied shear.

In view of the undisputed advantages put forward in the description (page 4, lines 23 to 26) and the examples in the patent in suit, the Board is satisfied that the above defined technical problem is plausibly solved.

7.2. The data relative to the melt viscosity for various shear rates mentioned in document (1) only record the stage of material whilst the particular shear rate is applied, but give no indication of what happens when the shear rate ceases to be applied. In particular, they do not suggest that the material retains a memory of pre-shearing history; moreover, there is no discussion of the relaxation period and thus no recognition that the benefit of reduced viscosity persists when the shear is removed (Appendix to Respondent's observations filed on 20 September 1984 during opposition procedure, page 1, paragraph 3). For this reason, this document cannot induce the skilled man to exploit the benefit of low viscosity in injection moulding processes.

7.3. It is not disputed that document (12) mentions in general terms that the orientation induced in liquid crystal polymers relaxes more slowly than in isotropic polymers (page 132, paragraph 2). However, as argued by the Respondent during oral proceedings in opposition procedure (minutes, page 6, paragraph 2), it is not clear whether the shear forces referred to in the middle of the paragraph in the above document are directed to the phenomenon of pressure driven flow as the result of the passage of the melt or solution through the injection nozzle, or to relatively moving surfaces. Moreover, in the Board's view, even if the skilled man considered relatively moving surfaces to produce the shear forces as required, there is no reason why he should not follow the teaching of document (1) regarding the advantage resulting from the use of reciprocating screw injection moulding machines. Furthermore, it is specified in document (12) that the observed average molecular orientation in a moulded article depends actually upon the processing conditions which may be the polymer's melt temperature, the mould's temperature and mass, the article's shape and dimensions, and the polymer's flow pattern and injection rate into the mould (last sentence of the paragraph); this can only mean that the authors of this article failed to recognise the advantages to be gained by preparing shaped articles by means of a process involving the step of preshearing the melt at a shear rate between 100 and 1000 s-1 between relatively moving surfaces.

For these various reasons, document (12) neither in isolation nor in combination with document (1) can suggest the operative features of the method as claimed.

7.4. The correlation between persisting reduced viscosity as a result of applied shear and improved processability is not to be found in any of the numerous documents relied upon by the Appellants. The fact that none of the nearly thirty documents on file is a patent document, is evidence that the prior art was more concerned with laboratory investigations on the basis of theoretical considerations than with the practical aspects of moulding operations such as processability.

7.5. For these reasons, in the Board's view, the subject-matter of Claim 1 involves an inventive step.

8. Claim 1 being allowable, the same applies to Claims 2 to 7 which represent preferred embodiments of Claim 1, the patentability of which is supported by that of the main claim.

Order

ORDER

For these reasons, it is decided that:

1. The decision under appeal is set aside.

2. The main request is rejected.

3. The case is remitted to the first instance with the order to maintain the patent on the basis of Claims 1 to 7 submitted during oral proceedings as auxiliary request and a description to be adapted accordingly.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility